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Abstract
The Davis–Fulling model (Fulling and Davies 1976 Proc. R. Soc. Lond. A
348 393; Davies and Fulling 1977 Proc. R. Soc. Lond. A 356 237) is studied
in the case of a perfect mirror starting from rest, accelerating for a large but
finite time T along the trajectory z(t) = − ln cosh(t), and after time T moving
with constant velocity. In this situation (a mirror with an asymptotically inertial
trajectory), the ‘in’ and ‘out’ states are well defined and thus the average number
of produced particles can be calculated using the Bogolubov coefficients. In
this letter, we compute rigorously the Bogolubov coefficient βω,ω′ , and we
prove that the black-body spectrum is obtained in the case 1 ∼ ω � ω′ � T .
The methods used by other authors to obtain the black-body spectrum are also
discussed. Finally, we prove that the number of produced particles in the ω

mode per unit time is
1

π

1

e2πω − 1
.

PACS numbers: 03.70.+k, 04.62.+v

1. Introduction

The Davies–Fulling model [2, 3] describes the creation of massless particles by a perfect
mirror following prescribed trajectories in two dimensions. In this letter, we study the particle
production in the case of a perfect mirror starting from the rest, accelerating for a large but
finite time T along the trajectory z(t) = − ln cosh(t), and after time T moving in an inertial
trajectory.

The interest of this two-dimensional problem is due to its simplicity and to the fact that
the four-dimensional calculation of the radiation emitted from a collapsing black hole given
by Hawking in [1] presents the same features that the model exposed in this letter (see [4]).
Then, since the trajectory used in this letter simulates the black-hole collapse better than the
trajectory used by Hawking in [1] (see the last paragraph of section 4), our calculation can
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clarify the mechanism of the Hawking radiation. Moreover, in contrast with [1, 3, 12], we
obtain the ‘Hawking effect’ without an intrinsic loss of information, i.e., preserving quantum
pure states (see [8, 10] for details).

To obtain the radiation emitted from the mirror, the Bogolubov coefficient βω,ω′ must
be calculated. This coefficient has been calculated in some works ([3, 12] etc), but in these
calculations, there are several serious mathematical mistakes due to wrong approximations.
We believe that these mistakes do not help clarify the radiation process, and for this reason
they could induce new mistakes in future investigations about this subject.

In this work, we compute rigorously the coefficient βω,ω′ , and we discuss the
approximations used in other works to obtain this coefficient.

One of the main results of the letter is the complete justification of the black-body radiation
formula

|βω,ω′ |2 ≈ 1

2πω′
1

e2πω − 1
,

but to deduce it we show that one needs the hypothesis 1 ∼ ω � ω′ � T that, to our
knowledge, appears here for the first time, and that we believe is quite relevant.

Therefore, when T → ∞, the number of produced particles in the ω mode (namely N(ω))
diverges logarithmically because N(ω) = ∫ ∞

0 dω′|βω,ω′ |2. For this reason, the physically
relevant quantity is the number of particles in the ω mode per unit time. This dimensionless
quantity is finite and its value is

1

π

1

e2πω − 1
.

The calculation of this quantity is very complicated, but due to its physical importance and
to the fact that it has never been computed before, we present a detailed calculation in a
mathematical appendix.

The letter is organized as follows. In section 2, we review the general quantum theory
of moving mirrors following a prescribed trajectory. In section 3, we prove correctly that the
black-body spectrum is obtained from the trajectory described in the abstract. In section 4, we
discuss the different methods used in others works to obtain the black-body radiation. Finally,
in the mathematical appendix we compute exactly the number of produced particles in the ω

mode per unit time.

2. Moving mirrors: general theory

Consider a massless scalar field φ in the two-dimensional Minkowski spacetime. Assume that
the mirror trajectory is C1 and it has the following form:

g(t) =



0 if t � 0
−ln cosh(t) if t ∈ [0, T ]
A(t − T ) − ln cosh(T ) if t � T ,

(1)

with A = − tanh(T ) ≈ −1 + 2e−2T , because we assume that T � 1. Finally, we impose the
following reflection condition φ(t, g(t)) = 0 ∀t ∈ R.

Introducing the lightlike coordinates u ≡ t − z and v ≡ t + z, the Klein–Gordon equation
becomes

∂2
uvφ = 0,

with boundary condition φ(u, p(u)) = 0, where v = p(u) is the trajectory of the mirror in
the (u, v) variables.
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The set of ‘in’ and ‘out’ mode functions is

in: φω(u, v) = i

2

√
1

πω
(e−iωv − e−iωp(u)); ω > 0, (2)

out: φ̄ω(u, v) = i

2

√
1

πω
(e−iωf (v) − e−iωu); ω > 0, (3)

where we have introduced the function f (v) = p−1(v).

Remark 2.1. In our case the function f has the following form:

f (v) =



v if v � 0
−ln(2 − ev) if v ∈ [0, z̄]
1−A
1 + A

v + 2
1 + A

(AT + ln cosh(T )) if v � z̄,

where z̄ = T − ln cosh(T ) ≈ ln(2) − e−2T .

It is a well-known fact that the average number of particles in the ω mode produced from
the vacuum, i.e. the density of produced particles per unit of frequency, is (see [6, 11])

N(ω) =
∫

dω′|βω,ω′ |2, (4)

where

βω,ω′ ≡ i
∫ ∞

g(t)

φ̄ω(t, z)
↔
∂t φω′(t, z) dz, (5)

is the β-Bogolubov coefficient. Then, in order to obtain the black-body spectrum we must
compute βω,ω′ for the trajectory described by the function g(t).

To compute the Bogolubov coefficient we use formula (5) at time t = 0. (Note that this
coefficient is time independent.) It is easy to check that

βω,ω′ = i

2π

∫ ∞

0

[√
ω′

ω
(e−iωf (z) − eiωz) sin(ω′z) −

√
ω

ω′ (f
′(z) e−iωf (z) − eiωz) sin(ω′z)

]
dz.

(6)

Remark 2.2. Note that βω,ω′ must be understood in the following way βω,ω′ ≡ limε→0 βω,ω′(ε),
where

βω,ω′(ε) = i

2π

∫ ∞

0

[√
ω′

ω
(e−iωf (z) − eiωz) sin(ω′z)

−
√

ω

ω′ (f
′(z) e−iωf (z) − eiωz) sin(ω′z)

]
e−εz dz.

Finally, we can make the decomposition βω,ω′ = b1
ω,ω′ + b2

ω,ω′ + b3
ω,ω′ with

b1
ω,ω′ = − 1

2π

√
ω′

ω

∫ z̄

0
e−i(ωf (z)+ω′z) dz (7)

b2
ω,ω′ = −1

4π i

1√
ωω′ e−iωf (z̄) e−iω′ z̄

{
1 +

(
ω′ − ω

1 − A

1 + A

)
ξ

(
ω′ + ω

1 − A

1 + A

)}
(8)

b3
ω,ω′ = 1

4π i

1√
ωω′ {1 + (ω′ − ω)ξ(ω + ω′)}, (9)

where we have introduced the function

ξ(x) ≡ −i lim
ε→0

∫ ∞

0
eipx e−εp dp = 1

x + i0
= P

1

x
− iπδ(x).
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3. The black-body spectrum

To obtain the black-body spectrum, we must calculate βω,ω′ in the following case:

1 ∼ ω � ω′ � ωT � T . (10)

In this situation we conclude that

b2
ω,ω′ ≈ 0; b3

ω,ω′ ≈ 1

2π i

1√
ωω′ (11)

because ω 1 − A
1 + A

≈ ω e2T � ωT � ω′, and ω′ � ω . Now we calculate b1
ω,ω′ ; we have

b1
ω,ω′ = − 1

2π

√
ω′

ω

∫ z̄

0
e−iω′z(2 − ez)iω dz. (12)

Making the change z = z̄ − ρ, we obtain

b1
ω,ω′ = − 1

2π

√
ω′

ω
eiz̄(ω−ω′)

∫ z̄

0
eiω′ρ(2e−z̄ − e−ρ)iω dρ ≡ − 1

2π

√
ω′

ω
eiz̄(ω−ω′)I. (13)

Note that, 2e−z̄ = 1 + e−2T , then we can write

I =
∫ z̄

0
eiω′ρ(1 − e−ρ + e−2T )iω dρ. (14)

Consider now the domain

D = {u ∈ C/ Re u ∈ [0, z̄], Im u ∈ [0, ε̄]}, with ε̄ � 1 and ε̄ω′ � 1.

Note that the function eiω′u(1 − e−u + e−2T )iω is analytic in D, and thus we can apply the
residue theorem in D. We obtain

I = i
∫ ε̄

0
e−ω′s(1 − e−is + e−2T )iω ds − i

∫ ε̄

0
eiω′ z̄e−ω′s(1 − e−z̄ e−is + e−2T )iω ds

+
∫ z̄

0
eiω′se−ω′ ε̄ (1 − e−iε̄ e−s + e−2T )iω ds. (15)

The last integral is approximately zero because we assume that ε̄ω′ � 1. In the second
integral that appears in (15), we make the approximation

1 − e−z̄ e−is + e−2T ≈ 1 − e−z̄ + e−2T = e−z̄,

because the variable s satisfies 0 � s � ε̄ � 1. Then, we obtain

− i
∫ ε̄

0
eiω′ z̄ e−ω′s(1 − e−z̄ e−is + e−2T )iω ds ≈ − i

ω′ e−iz̄(ω−ω′). (16)

Finally, in the first integral we approximate 1 − e−is by is, and we obtain

i
∫ ε̄

0
e−ω′s(1 − e−is + e−2T )iω ds ≈ i

∫ ε̄

0
e−ω′s(is + e−2T )iω ds. (17)

Making the change ω′s = y we have

i
∫ ε̄

0
e−ω′s(1 − e−is + e−2T )iω ds ≈

( i

ω′
)1+iω

∫ ω′ ε̄

0
e−yy iω dy

≈
( i

ω′
)1+iω


(1 + iω), (18)

because in (10), we have assumed that ω′ � T . Consequently, when 1 ∼ ω � ω′ � T we
have

βω,ω′ ≈ − i

2π

1√
ωω′ e−iz̄(ω−ω′)

( i

ω′
)iω


(1 + iω). (19)
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Then, since |
(1 + iω)|2 = πω/sinh(πω), we obtain the black-body spectrum

|βω,ω′ |2 ≈ 1

2πω′
1

e2πω − 1
. (20)

Remark 3.1. Formula (20) is also valid in the case 1 ∼ ω � ω′ � e2T .

Remark 3.2. The number of particles produced in the ω mode is finite when T is finite but
N(ω) diverges when T → ∞. In this situation the physically relevant quantity is the number
of particles per unit time: limT →∞ N(ω)

T
. Note that this quantity is dimensionless. Due to the

difficulty of this computation we prove, in the appendix, that for 0 � ω ∼ 1 we have

lim
T →∞

N(ω)

T
= 1

π

1

e2πω − 1
. (21)

4. Some comments

1. In [11], the author uses the decomposition βω,ω′ = βI
ω,ω′ + βII

ω,ω′ + βIII
ω,ω′ , with

βI
ω,ω′ = b1

ω,ω′ +
1

2π

1√
ωω′ sin(ω′z̄) e−iωf (z̄) (22)

βII
ω,ω′ = b2

ω,ω′ − 1

2π

1√
ωω′ sin(ω′z̄) e−iωf (z̄) (23)

βIII
ω,ω′ = b3

ω,ω′ . (24)

Then in [12], in order to compute βω,ω′ , the author assumes that the mirror accelerates
forever, and then he uses the approximation

βω,ω′ ≈ βI
ω,ω′ + βIII

ω,ω′ ,

that is, the term βII
ω,ω′ is not considered. The author claims: ‘The term 1

2π
1√
ωω′ sin(ω′z̄) e−iωf (z̄)

that appears in βI
ω,ω′ oscillates rapidly. Thus, it converges distributionally to zero and it may

be neglected.’
Clearly this affirmation is wrong, because the modulus of this term does not tend to zero.

The true result, in the approximation 1 ∼ ω � ω′ � T , is

∣∣βI
ω,ω′ + βIII

ω,ω′
∣∣2 ≈ 1

2πω′
1

e2πω − 1
+

sin2(ω′ ln(2))

4π2ωω′ ≈ 1

2πω′
1

e2πω − 1
+

1

8π2ωω′ .

From this result we can deduce that, in order to obtain the black-body spectrum, we need to
consider the term βII

ω,ω′ . And therefore the true approximation of βω,ω′ is βω,ω′ ≈ b1
ω,ω′ +b3

ω,ω′ ,

because b2
ω,ω′ ≈ 0.

2. In [3, 4], the authors take the approximation βω,ω′ ≈ b1
ω,ω′ , and make the approximation

f (v) = − ln(ln(2) − v), then a wrong evaluation of βω,ω′ provides the desired result. More
precisely, the authors evaluate essentially the integral

βω,ω′ ≈ − 1

2π

√
ω′

ω
lim
ε→0

∫ ln 2−e−2T

0
dz e−iω′z(ln(2) − z)iω eεz,

in the following way. First making the change ln(2) − z = s
ω′ , we obtain

b1
ω,ω′ ≈ − 1

2π

√
ω′

ω

2−iω′

(ω′)1+iω
lim
ε→0

∫ ω′ ln 2

ω′e−2T

ds eiss iω e− ε

ω′ s ,



L312 Letter to the Editor

then applying a Wick rotation through the residue theorem, we deduce

b1
ω,ω′ ≈ − 1

2π

√
ω′

ω

2−iω′

(ω′)1+iω

[
i1+iω lim

ε→0

∫ ω′ ln 2

0
ds e−s+iωe−2T

(s − iω e−2T )iω e− ε

ω′ (is+ω e−2T )

− (ω′ ln 2)1+iω lim
ε→0

∫ π
2

0
dα eiα eiω′ ln(2)eiα

e−αω e−εln(2) eiα

]
.

The first integral is approximately − 1
2π

√
ω′
ω

2−iω′

(ω′)1+iω i1+iω
(1 + iω), because ω′ � 1 and

ω′ e−2T ≈ 0, but a careful analysis shows that the second integral is rather different from zero.
The mistake made by the authors in [3] is to approximate this second integral by zero.

The real result, deduced from (11) and (19), is

b1
ω,ω′ ≈ − i

2π

1√
ωω′ e−i ln(2)(ω−ω′)

( i

ω′
)iω


(1 + iω) − 1

2π i

1√
ωω′ ,

and, clearly, it does not provide the black-body radiation.
3. In the case that the velocity of the mirror is discontinuous, we do not obtain the

black-body radiation. For example, if we assume that the velocity of the mirror is zero for
t > T , that is A = 0, we have

b2
ω,ω′ ≈ −1

2π i

1√
ωω′ e−iωf (z̄) e−iω′ z̄,

and therefore ∣∣βI
ω,ω′

∣∣2 ≈ 1

2πω′
1

e2πω − 1
+

1

4π2ωω′ .

4. To obtain the result in the usual system of units, we take the trajectory

g(t) =



0 if t � 0
− c

k
ln cosh(kt) if t ∈ [0, T ]

−c tanh(kT )(t − T ) − c
k

ln cosh(kT ) if t � T ,

(25)

where c is the light speed and k is a constant frequency. Then we have

|βω,ω′ |2 ≈ 1

2πω′k
1

e2π ω
k − 1

and lim
T →∞

N(ω)

T
= 1

π

1

e2π ω
k − 1

.

5. In [6,7] the authors consider trajectories of the type f (v) = − ln(ln(2) − v), that we
understand as a limit case of the trajectory

f (v) =
{−ln(ln(2) − v) if v ∈ (∞, ln(2) − e−2T )

e2T v − e2T ln(2) + 1 + 2T if v � ln(2) − e−2T .
(26)

We consider the case 1 ∼ ω � ω′ � T ; in this situation an easy calculation provides the
following approximation

βω,ω′ ≈ − 1

2π

√
ω′

ω
lim
ε→0

∫ ln 2−e−2T

−∞
dz e−iω′z(ln(2) − z)iω eεz

≈ − 1

2π

√
ω′

ω

2−iω′

(ω′)1+iω
lim
ε→0

∫ ∞

ω′ e−2T

ds eiss iωe−εs .

Then, applying correctly a Wick rotation through the residue theorem, and using that
ω′ e−2T ≈ 0, we obtain

βω,ω′ ≈ − 1

2π

√
ω′

ω

2−iω′

(ω′)1+iω
i1+iω
(1 + iω).
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Then, we conclude that

|βω,ω′ |2 ≈ 1

2πω′
1

e2πω − 1
.

Note that this deduction of the black-body spectrum is essentially the same one used
by Hawking in [1] to calculate the emitted radiation from a collapsing black hole. It is
also interesting to remark that the trajectory (1) simulates the black-hole collapse better than
the trajectory (26), although as we have already seen the trajectory (26) provides an easier
calculation of the β-Bogolubov coefficient.

5. Conclusions

We have shown that to understand particle creation in the presence of a moving mirror it is
crucial to assume that this one is asymptotically inertial (the case of a mirror that accelerates
forever must be understood as a limit case). From this assumption, the black-body spectrum
can be obtained from a prescribed class of trajectories and it is also possible to calculate
explicitly the number of produced particles in the ω mode per unit time. We believe that these
results could have applications to study the reaction of the radiated field in the trajectory of
the mirror (the back reaction). This is an open question (see [9]), whose answer could be
useful to elucidate the naked singularity conjecture (see [4]). We also believe that our results
can permit the understanding of particle creation in several cosmological models with event
horizons, for example, in the deSitter spacetime (see [5, 13]).

Appendix

In this appendix, we compute the quantity

lim
T →∞

N(ω)

T
= lim

T →∞
1

T

∫ ∞

0
dω′|βω,ω′ |2.

We take the following decomposition:

[0,∞) = [0, e−√
T ) ∪ [

e−√
T , T

1
8
) ∪ [

T
1
8 , e2T T − 1

8
) ∪ [

e2T T − 1
8 , e2T T

1
8
) ∪ [

e2T T
1
8 ,∞)

,

and we study the different cases:

1. ω′ ∈ [0, e−√
T )

In this situation we have b2
ω,ω′ ≈ 0, b3

ω,ω′ ≈ 0 and
∣∣b1

ω,ω′
∣∣ � 1

2π

√
ω′
ω

ln 2. Consequently

lim
T →∞

1

T

∫ e−√
T

0
dω′|βω,ω′ |2 ∼ lim

T →∞
1

T

∫ e−√
T

0
dω′ ω′ = 0.

2. ω′ ∈ [
e−√

T , T
1
8
)

Now we have
∣∣b2

ω,ω′
∣∣ � 1

2π
1√
ω′ω

,
∣∣b3

ω,ω′
∣∣ � 1

2π
1√
ω′ω

and
∣∣b1

ω,ω′
∣∣ � 1

2π

√
ω′
ω

ln 2. Thus

lim
T →∞

1

T

∫ T
1
8

e−√
T

dω′|βω,ω′ |2 ∼ lim
T →∞

1

T

∫ T
1
8

e−√
T

dω′
(

1

ω′ + ω′
)

= 0.

3. ω′ ∈ [
T

1
8 , e2T T − 1

8
)

From the remark 2.1, we deduce that in this case formula (20) is valid. Then, we have

lim
T →∞

1

T

∫ e2T T
− 1

8

T
1
8

dω′|βω,ω′ |2 = 1

π

1

e2πω − 1
.
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4. ω′ ∈ [
e2T T − 1

8 , e2T T
1
8
)

In this case we have
∣∣b2

ω,ω′
∣∣ � 1

2π
1√
ω′ω

,
∣∣b3

ω,ω′
∣∣ � 1

2π
1√
ω′ω

. To compute b1
ω,ω′ we use

formulae (13) and (15) with ε̄ = 2e−2T T
9
8 . The last integral of (15) is bounded by

ln(2) e−2T , the second integral is approximately − i
ω′ e−iz̄(ω−ω′), and the first integral is

approximately

i
∫ 2e−2T T

9
8

0
e−ω′s(is + e−2T )iω ds,

making the change e−2T u = s we obtain

(ie−2T )1+iω
∫ 2T

9
8

0
e−ω′e−2T u(u − i)iω du.

Note that e−ω′e−2T u � e−uT
− 1

8 , and |(u − i)iω| � e
π
2 ω, thus∣∣∣∣∣∣(ie−2T )1+iω

∫ 2T
9
8

0
e−ω′e−2T u(u − i)iω du

∣∣∣∣∣∣ � e−2T

∫ 2T
9
8

0
e−uT

− 1
8 du ∼ T

1
8 e−2T .

From this result, we deduce that∣∣b1
ω,ω′

∣∣2 ∼ 1

ω′ + ω′ e−4T
(
1 + T

1
4
)
,

consequently

lim
T →∞

1

T

∫ e2T T
1
8

e2T T
− 1

8

dω′|βω,ω′ |2 ∼ lim
T →∞

1

T

(
ln T + T

1
4 + T

1
2
) = 0.

5. ω′ ∈ [
e2T T

1
8 ,∞)

In this case we have

b2
ω,ω′ = −1

2π i

1√
ωω′ e−iωf (z̄) e−iω′ z̄ + O

(
ω′− 3

2
)

b3
ω,ω′ = 1

2π i

1√
ωω′ + O

(
ω′− 3

2
)
.

To compute b1
ω,ω′ we use formulae (13) and (15) with ε̄ = e−T . The last integral of (15)

is bounded by ln(2) e−ω′e−T

. The second integral is approximately − i
ω′ e−iz̄(ω−ω′) + O(ω′−2

).

Then when we multiply this second integral times − 1
2π

√
ω′
ω

eiz̄(ω−ω′), the first term is cancelled

with the first term of b3
ω,ω′ .

The first integral of (15) is approximately∫ e−T

0
e−ω′s(is + e−2T )iω ds = i

∫ e−2T T
− 1

16

0
e−ω′s(is + e−2T )iω ds

+ i
∫ e−T

e−2T T
− 1

16

e−ω′s(is + e−2T )iω ds ≡ (A) + (B).

Note that (A) is approximately

i
∫ e−2T T

− 1
16

0
e−ω′s e−2T iω ds ≈ i

ω′ e−2T iω
(
1 − e−ω′e−2T T

− 1
16

)
.
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Then when we multiply (A) times − 1
2π

√
ω′
ω

eiz̄(ω−ω′), the first term is cancelled with the

first term of b2
ω,ω′ .

Finally we study (B). Making the change s = e−2T u, we obtain

(B) = (ie−2T )1+iω
∫ eT

T
− 1

16

e−ω′e−2T u(u − i)iω du,

thus

|(B)| � e−2T

∫ eT

T
− 1

16

e−ω′e−2T u du � 1

ω′ e−ω′e−2T T
− 1

16
.

With these results, we conclude that

lim
T →∞

1

T

∫ ∞

e2T T
1
8

dω′|βω,ω′ |2 ∼ lim
T →∞

1

T

(∫ ∞

e2T T
1
8

dω′ ω′e−2ω′e−T

+
∫ ∞

e2T T
1
8

dω′ 1

ω′ e−2ω′e−2T T
− 1

16

)
.

Making the change v = ω′ e−T in the first integral, and the change v = ω′ e−2T T − 1
16 in

the second integral, we deduce that

lim
T →∞

1

T

∫ ∞

e2T T
1
8

dω′|βω,ω′ |2 ∼ lim
T →∞

1

T

(
e2T

∫ ∞

eT T
1
8

dv v e−2v +
∫ ∞

T
1
16

dv
1

v
e−2v

)
= 0.

Acknowledgment

This letter is partially supported by DGESIC (Spain), project PB98-0932-C02-01.

References

[1] Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Fulling S A and Davies C P W 1976 Proc. R. Soc. Lond. A 348 393
[3] Davies C P W and Fulling S A 1977 Proc. R. Soc. Lond. A 356 237
[4] Birrell N D and Davies C P W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University

Press)
[5] Mottola E 1985 Phys. Rev. D 31 754
[6] Walker W R 1985 Phys. Rev. D 31 767
[7] Carlitz R D and Willey R S 1987 Phys. Rev. D 36 2327
[8] Stephens C R, ’t Hooft G and Whiting B F 1994 Class. Quantum Grav. 11 621
[9] Tuning N and Verlinde H 1996 Preprint hep-th/9605063

[10] Hartle J B 1997 Preprint gr-qc/9705022
[11] Calogeracos A 2002 J. Phys. A: Math. Gen. 35 3415
[12] Calogeracos A 2002 J. Phys. A: Math. Gen. 35 3435
[13] Nojiri S and Odintsov S D 2003 Preprint hep-th/0303011


